I am a
Home I AM A Search Login

Papers of the Week


Papers: 28 Mar 2020 - 3 Apr 2020


Animal Studies, Pharmacology/Drug Development


2020 Mar 26


J Neurotrauma

FTY720 attenuates neuropathic pain after spinal cord injury by decreasing systemic and local inflammation in a rat spinal cord compression model.

Authors

Yamazaki K, Kawabori M, Seki T, Takamiya S, Tateno T, Konno K, Watanabe M, Houkin K
J Neurotrauma. 2020 Mar 26.
PMID: 32216535.

Abstract

Neuropathic pain severely impairs rehabilitation and quality of life after spinal cord injury (SCI). The sphingosine-1-phosphate receptor agonist FTY720 plays an important protective role in neuronal injury. This study aims to examine the effects of FTY720 in a rat acute SCI model, focusing on neuropathic pain. Female rats with SCI induced by 1-minute clip compression were administered vehicle or 1.5 mg/kg of FTY720 24 hours after the injury. Using the mechanical nociceptive threshold test, we monitored neuropathic pain and performed histological analysis of the pain pathway, including the  opioid receptor (MOR), hydroxytryptamine transporter (HTT), and calcitonin gene-related peptide (CGRP). The motor score, SCI lesion volume, residual motor axons, inflammatory response, glial scar, and microvascular endothelial dysfunction were also compared between the two groups. FTY720 treatment resulted in significant attenuation of post-traumatic neuropathic pain. It also decreased systemic and local inflammation, thereby reducing the damaged areas and astrogliosis and resulting in motor functional recovery. While there was no difference in the CGRP expression between the two groups, FTY720 significantly preserved the MOR in both the caudal and rostral areas of the spinal dorsal horn. While HTT was preserved in the FTY720 group, it was significantly increased in the rostral side and decreased in the caudal side of the injury in the vehicle group. These results suggest that FTY720 ameliorates post-traumatic allodynia through regulation of neuro-inflammation, maintenance of the blood brain barrier, and inhibition of glial scar formation, thereby preserving the connectivity of the descending inhibitory pathway and reducing neuropathic pain.