I am a
Home I AM A Search Login

Papers of the Week


Papers: 14 May 2022 - 20 May 2022


Animal Studies, Pharmacology/Drug Development


2022 May 17


J Clin Invest

Editor's Pick

mTORC2 mediates structural plasticity in distal nociceptive endings that contributes to pain hypersensitivity following inflammation.

Authors

Wong C, Barkai O, Wang F, Thörn Pérez C, Lev S, Cai W, Tansley S, Yousefpour N, Hooshmandi M, Lister KC, Latif M, Cuello CA, Prager-Khoutorsky M, Mogil JS, Séguéla P, De Koninck Y, Ribeiro-da-Silva A, Binshtok AM, Khoutorsky A
J Clin Invest. 2022 May 17.
PMID: 35579957.

Abstract

The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability, and thus to the development of inflammatory pain. Here, we showed that tissue inflammation-induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein, Rictor, prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modelling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation-induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.