I am a
Home I AM A Search Login

Papers of the Week


Papers: 7 May 2022 - 13 May 2022


2022 May 05


Mol Ther

Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain.

Authors

Tadokoro T, Bravo-Hernandez M, Agashkov K, Kobayashi Y, Platoshyn O, Navarro M, Marsala S, Miyanohara A, Yoshizumi T, Shigyo M, Krotov V, Juhas S, Juhasova J, Nguyen D, Skalnikova H K, Motlik J, Studenovska H, Proks V, Reddy R, Driscoll SP, et al.
Mol Ther. 2022 May 05.
PMID: 35524407.

Abstract

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously-induced change in developmentally-imprinted excitatory neurotransmitter phenotype of these neurons to inhibitory has not yet been achieved. Here we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-Aminobutyric acid,) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) which persisted for minimum 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (such as sedation, motor weakness or loss of normal sensation) were seen between 2-13 months post-treatment in naive adult mice, pigs and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord- or peripheral nerve-injury induced neuropathic pain.