I am a
Home I AM A Search Login

Papers of the Week


Papers: 26 Feb 2022 - 4 Mar 2022


2022


Front Pharmacol


13

Fenestropathy of Voltage-Gated Sodium Channels.

Authors

Gamal El-Din TM, Lenaeus MJ
Front Pharmacol. 2022; 13:842645.
PMID: 35222049.

Abstract

Voltage-gated sodium channels (Na) are responsible for the initiation and propagation of action potentials in excitable cells. From pain to heartbeat, these integral membrane proteins are the ignition stations for every sensation and action in human bodies. They are large (>200 kDa, 24 transmembrane helices) multi-domain proteins that couple changes in membrane voltage to the gating cycle of the sodium-selective pore. Na mutations lead to a multitude of diseases – including chronic pain, cardiac arrhythmia, muscle illnesses, and seizure disorders – and a wide variety of currently used therapeutics block Na Despite this, the mechanisms of action of Na blocking drugs are only modestly understood at this time and many questions remain to be answered regarding their state- and voltage-dependence, as well as the role of the hydrophobic membrane access pathways, or fenestrations, in drug ingress or egress. Na fenestrations, which are pathways that connect the plasma membrane to the central cavity in the pore domain, were discovered through functional studies more than 40 years ago and once thought to be simple pathways. A variety of recent genetic, structural, and pharmacological data, however, shows that these fenestrations are actually key functional regions of Na that modulate drug binding, lipid binding, and influence gating behaviors. We discovered that some of the disease mutations that cause arrhythmias alter amino acid residues that line the fenestrations of Nav1.5. This indicates that fenestrations may play a critical role in channel's gating, and that individual genetic variation may also influence drug access through the fenestrations for resting/inactivated state block. In this review, we will discuss the channelopathies associated with these fenestrations, which we collectively name "Fenestropathy," and how changes in the fenestrations associated with the opening of the intracellular gate could modulate the state-dependent ingress and egress of drugs binding in the central cavity of voltage gated sodium channels.