I am a
Home I AM A Search Login

Papers of the Week


Papers: 5 Feb 2022 - 11 Feb 2022


2022 Jan 29


Eur J Med Chem


231

Design and synthesis of pyrido[2,3-d]pyrimidine derivatives for a novel PAC1 receptor antagonist.

Authors

Takasaki I, Watanabe A, Okada T, Kanayama D, Nagashima R, Shudo M, Shimodaira A, Nunomura K, Lin B, Watanabe Y, Gouda H, Miyata A, Kurihara T, Toyooka N
Eur J Med Chem. 2022 Jan 29; 231:114160.
PMID: 35124531.

Abstract

Since PA-8 (5-(4-(Allyloxy)-3-methoxyphenyl)-2-amino-5,8-dihydro-3H,6H-pyrido[2,3-d]pyrimidine-4,7-dione) was recently identified as a novel small-molecule antagonist of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC1) receptor, a series of pyrido[2,3-d]pyrimidine derivatives have been designed, synthesized and subsequently evaluated for antagonistic activity on the PAC1 receptor. In this study, we synthesized 21 derivatives based on the PA-8 structure. Among them, the compound 2o (2-Amino-5-(3-trifluoromethoxy-phenyl)-5,8-dihydro-3H,6H-pyrido[2,3-d]pyrimidine-4,7-dione) showed more potent antagonistic activities than PA-8. Intrathecal (i.t.) injection of 2o blocked the induction of PACAP-induced aversive behaviors and mechanical allodynia in mice, and the effects were more potent than those of PA-8. A single i.t. injection of 2o also inhibited spinal nerve ligation (SNL)-induced mechanical allodynia. Repeated intraperitoneal administration of 2o gradually reduced the SNL-induced mechanical allodynia, and this effect appeared earlier than for PA-8. In addition, 2o exhibited a favorable ADME and pharmacokinetics profiles. These results suggest that 2o may become an analgesic for the treatment of neuropathic pain.