I am a
Home I AM A Search Login

Papers of the Week


Papers: 22 Jan 2022 - 28 Jan 2022


Pharmacology/Drug Development


2022 Jan 27


Mol Pain

P-Rex2 mediation of synaptic plasticity contributes to bone cancer pain.

Authors

Fu Q, Huang X, Li W, Wan S, Li Y, Li X, Su S, Xu X, Wu Y
Mol Pain. 2022 Jan 27:17448069221076460.
PMID: 35083941.

Abstract

Bone cancer pain (BCP) seriously affects the quality of life, however, due to its complex mechanism the clinical treatment was unsatisfactory. Recent studies have showed several Rac-specific guanine nucleotide exchange factor (GEF) that affect development and structure of neuronal processes play a vital role in the regulation of chronic pain. P-Rex2 is one of GEFs that regulate spine density, and the present study was performed to examine the effect of P-Rex2 on the development of BCP. Tumor cells implantation induced the mechanical hyperalgesia, which was accompanied by an increase in spinal protein P-Rex2, phosphorylated Rac1 (p-Rac1) and phosphorylated GluR1 (p-GluR1), and number of spines. Intrathecal injection a P-Rex2-targeting RNAi lentivirus relieved BCP and reduced the expression of P-Rex2, p-Rac1, p-GluR1and number of spines in the BCP mice. Meanwhile, P-Rex2 knockdown reversed BCP-enhanced AMPA receptor (AMPAR)-induced current in dorsal horn neurons. In summary, this study suggested that P-Rex2 regulated GluR1-containing AMPAR trafficking and spine morphology via Rac1/pGluR1 pathway is a fundamental pathogenesis of BCP. Our findings provide a better understanding of the function of P-Rex2 as a possible therapeutic target for relieving BCP.