I am a
Home I AM A Search Login

Papers of the Week


Papers: 27 Nov 2021 - 3 Dec 2021


2021 Nov 29


Neurosci Lett

Mini-Review: Dissecting receptor-mediated stimulation of TRPV4 in nociceptive and inflammatory pathways.

Authors

Abstract

Transient Receptor Potential Vanilloid 4 (TRPV4) is a polymodal, non-selective cation channel that detects thermal, mechanical, and environmental cues and contributes to a range of diverse physiological processes. The effects of chronic TRPV4 stimulation and gain-of-function genetic mutations suggest that TRPV4 may also be a valuable therapeutic target for pathophysiological events including neurogenic inflammation, peripheral neuropathies, and impaired wound healing. There has been significant interest in defining how and where TRPV4 may promote inflammation and pain. Endogenous stimuli such as osmotic stress and lipid binding are established TRPV4 activators. The TRP channel family is also well-known to be controlled by 'receptor-operated' pathways. For example, G protein-coupled receptors (GPCRs) expressed by primary afferent neurons or other cells in inflammatory pathways utilize TRPV4 as an effector protein to amplify nociceptive and inflammatory signaling. Contributing to disorders including arthritis, neuropathies, and pulmonary edema, GPCRs such as the protease-activated receptor PAR2 mediate activation of kinase signaling cascades to increase TRPV4 phosphorylation, resulting in sensitization and enhanced neuronal excitability. Phospholipase activity also leads to production of polyunsaturated fatty acid lipid mediators that directly activate TRPV4. Consistent with the contribution of TRPV4 to disease, pharmacological inhibition or genetic ablation of TRPV4 can diminish receptor-mediated inflammatory events. This review outlines how receptor-mediated signaling is a major endogenous driver of TRPV4 gating and discusses key signaling pathways and emerging TRPV4 modulators such as the mechanosensitive Piezo1 ion channel. A collective understanding of how endogenous stimuli can influence TRPV4 function is critical for future therapeutic endeavors to modulate this channel.