I am a
Home I AM A Search Login

Papers of the Week


Papers: 21 Nov 2020 - 27 Nov 2020


Animal Studies, Pharmacology/Drug Development


2020 Nov 23


Sci Rep


10


1

In vitro and in vivo pharmacological activity of minor cannabinoids isolated from Cannabis sativa.

Authors

Zagzoog A, Mohamed KA, Kim H JJ, Kim ED, Frank CS, Black T, Jadhav PD, Holbrook LA, Laprairie RB
Sci Rep. 2020 Nov 23; 10(1):20405.
PMID: 33230154.

Abstract

The Cannabis sativa plant contains more than 120 cannabinoids. With the exceptions of ∆-tetrahydrocannabinol (∆-THC) and cannabidiol (CBD), comparatively little is known about the pharmacology of the less-abundant plant-derived (phyto) cannabinoids. The best-studied transducers of cannabinoid-dependent effects are type 1 and type 2 cannabinoid receptors (CB1R, CB2R). Partial agonism of CB1R by ∆-THC is known to bring about the 'high' associated with Cannabis use, as well as the pain-, appetite-, and anxiety-modulating effects that are potentially therapeutic. CB2R activation by certain cannabinoids has been associated with anti-inflammatory activities. We assessed the activity of 8 phytocannabinoids at human CB1R, and CB2R in Chinese hamster ovary (CHO) cells stably expressing these receptors and in C57BL/6 mice in an attempt to better understand their pharmacodynamics. Specifically, ∆-THC, ∆-tetrahydrocannabinolic acid (∆-THCa), ∆-tetrahydrocannabivarin (THCV), CBD, cannabidiolic acid (CBDa), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC) were evaluated. Compounds were assessed for their affinity to receptors, ability to inhibit cAMP accumulation, βarrestin2 recruitment, receptor selectivity, and ligand bias in cell culture; and cataleptic, hypothermic, anti-nociceptive, hypolocomotive, and anxiolytic effects in mice. Our data reveal partial agonist activity for many phytocannabinoids tested at CB1R and/or CB2R, as well as in vivo responses often associated with activation of CB1R. These data build on the growing body of literature showing cannabinoid receptor-dependent pharmacology for these less-abundant phytocannabinoids and are critical in understanding the complex and interactive pharmacology of Cannabis-derived molecules.