I am a
Home I AM A Search Login

Papers of the Week


Papers: 1 Aug 2020 - 7 Aug 2020


Human Studies, Pharmacology/Drug Development


2020 Aug 05


J Neurophysiol

Neurophysiological response properties of medullary pain-control neurons following chronic treatment with morphine or oxycodone: modulation by acute ketamine.

Authors

Viisanen-Kuopila H, Lilius TO, Sagalajev B, Rauhala P, Kalso E, Pertovaara A
J Neurophysiol. 2020 Aug 05.
PMID: 32755331.

Abstract

Descending facilitatory circuitry that involves the rostroventromedial medulla (RVM) exerts a significant role in the development of antinociceptive tolerance and hyperalgesia following chronic morphine treatment. The role of the RVM in the development of antinociceptive tolerance to oxycodone, another clinically used strong opioid, is not yet known. Ketamine, an NMDA receptor antagonist, attenuates opioid antinociceptive tolerance, but its effect on RVM cell discharge in opioid tolerant animals is not known. Here, we compared chronic effects of morphine and oxycodone on the discharge properties of RVM cells and attempted to attenuate chronic treatment-induced changes with ketamine. Parallel recordings of RVM cell discharge and limb withdrawal response were performed under light pentobarbital anesthesia in male rats following sustained systemic treatment with morphine or oxycodone at equianalgesic doses. Ongoing activity and the response to noxious heat and pinch were determined in pronociceptive RVM ON-cells and antinociceptive OFF-cells on the sixth treatment day. Proportions of RVM cell types were not changed. Chronic oxycodone induced antinociceptive tolerance both in limb withdrawal and RVM cell activity. Chronic morphine induced antinociceptive tolerance in limb withdrawal that was accompanied by pronociceptive heat response changes in RVM ON- and OFF-cells. A behaviorally subantinociceptive dose of acute ketamine reversed antinociceptive tolerance both to morphine and oxycodone in limb withdrawal and reversed the chronic morphine-induced pronociceptive discharge changes in RVM cells. The results indicate that an NMDA receptor-dependent descending pronociceptive circuitry involving the RVM has an important role in behavioral antinociceptive tolerance to morphine but not oxycodone.