I am a
Home I AM A Search Login

Papers of the Week


Papers: 18 Jul 2020 - 24 Jul 2020


Animal Studies, Pharmacology/Drug Development


2020 Jul 20


Addict Biol

Mu opioid receptors on vGluT2-expressing glutamatergic neurons modulate opioid reward.

Authors

Reeves KC, Kube MJ, Grecco GG, Fritz BM, Muñoz B, Yin F, Gao Y, Haggerty DL, Hoffman HJ, Atwood BK
Addict Biol. 2020 Jul 20:e12942.
PMID: 32686251.

Abstract

The role of Mu opioid receptor (MOR)-mediated regulation of GABA transmission in opioid reward is well established. Much less is known about MOR-mediated regulation of glutamate transmission in the brain and how this relates to drug reward. We previously found that MORs inhibit glutamate transmission at synapses that express the Type 2 vesicular glutamate transporter (vGluT2). We created a transgenic mouse that lacks MORs in vGluT2-expressing neurons (MORflox-vGluT2cre) to demonstrate that MORs on the vGluT2 neurons themselves mediate this synaptic inhibition. We then explored the role of MORs in vGluT2-expressing neurons in opioid-related behaviors. In tests of conditioned place preference, MORflox-vGluT2cre mice did not acquire place preference for a low dose of the opioid, oxycodone, but displayed conditioned place aversion at a higher dose, whereas control mice displayed preference for both doses. In an oral consumption assessment, these mice consumed less oxycodone and had reduced preference for oxycodone compared with controls. MORflox-vGluT2cre mice also failed to show oxycodone-induced locomotor stimulation. These mice displayed baseline withdrawal-like responses following the development of oxycodone dependence that were not seen in littermate controls. In addition, withdrawal-like responses in these mice did not increase following treatment with the opioid antagonist, naloxone. However, other MOR-mediated behaviors were unaffected, including oxycodone-induced analgesia. These data reveal that MOR-mediated regulation of glutamate transmission is a critical component of opioid reward.