I am a
Home I AM A Search Login

Papers of the Week


Papers: 9 May 2020 - 15 May 2020


Pharmacology/Drug Development


2020 May 07


Mol Cell Neurosci

Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro.

Authors

Schmitt L-I, Leo M, Kutritz A, Kleinschnitz C, Hagenacker T
Mol Cell Neurosci. 2020 May 07:103499.
PMID: 32389805.

Abstract

Platinum-based chemotherapeutics still play an important role in cancer therapy, however, severe side effects, such as painful neuropathy, occur frequently. The pathophysiologic mechanisms depend on the applied chemotherapeutic agent and are still controversial. In addition to neuronal damage, disturbance of glial cell activity may contribute to neurotoxicity. Here, we focused on the effect of oxaliplatin on satellite glial cell (SGC) function and on the activity of the dorsal root ganglion (DRG) neurons. SGCs were isolated as high-purity cultures and treated with 1 and 10 μM oxaliplatin for 2, 4 and 24 h. Subsequently, glial fibrillary acid protein (GFAP), reactive oxygen species (ROS), Connexin-43 (Cx-43), and inward rectifier potassium channel 4.1 (K) expression was determined by immunocytochemical staining (ICC) and Western blot analyses. Immunochemical staining and Western blot analysis showed an increase in the immune reactivity (IR) and protein levels of ROS, GFAP, and Cx-43. Furthermore, reduction of the IR and protein levels and current density were demonstrated using patch-clamp measurements, of K channels after oxaliplatin exposure. Cytokine release in SGCs was measured using enzyme-linked immunosorbent assays (ELISA) after oxaliplatin exposure and indicated an increased release of IL-6 and TNFα, while IL-1β was decreased. The direct influence of SGC-secreted factors in the supernatant after oxaliplatin treatment led to the hyperexcitability of cultured DRG neurons. In summary, oxaliplatin has a direct impact on the modulation and function of different SGC proteins. Furthermore, SGC-released factors influence the excitability of sensory neurons, qualifying SGCs as potential targets for the prevention and treatment of oxaliplatin-induced polyneuropathy.