I am a
Home I AM A Search Login

Papers of the Week


Papers: 21 Mar 2020 - 27 Mar 2020


Animal Studies


2020 Apr


Pain


161


4

Nicotinamide adenine dinucleotide phosphate oxidase 2-derived reactive oxygen species contribute to long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high-frequency stimulus of the s

Abstract

High-frequency stimulation (HFS) of the sciatic nerve has been reported to produce long-term potentiation (LTP) and long-lasting pain hypersensitivity in rats. However, the central underlying mechanism remains unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) belongs to a group of electron-transporting transmembrane enzymes that produce reactive oxygen species (ROS). Here, we found that NOX2 was upregulated in the lumbar spinal dorsal horn after HFS of the left sciatic nerve, which induced bilateral pain and spinal LTP in both male and female rats. Blocking NOX2 with blocking peptide or shRNA prevented the development of bilateral mechanical allodynia, the induction of spinal LTP, and the phosphorylation of N-methyl-d-aspartate (NMDA) receptor 2B (GluN2B) and nuclear factor kappa-B (NF-κB) p65 after HFS. Moreover, NOX2 shRNA reduced the frequency and amplitude of both spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents in laminar II neurons. Furthermore, 8-hydroxyguanine (8-OHG), an oxidative stress marker, was increased in the spinal dorsal horn. Spinal application of ROS scavenger, Phenyl-N-tert-butylnitrone (PBN), depressed the already established spinal LTP. Spinal application of H2O2, one ROS, induced LTP and bilateral mechanical allodynia, increased the frequency and amplitude of spontaneous excitatory postsynaptic currents in laminar II neurons, and phosphorylated GluN2B and p65 in the dorsal horn. This study provided electrophysiological and behavioral evidence that NOX2-derived ROS in the spinal cord contributed to persistent mirror-image pain by enhancing the synaptic transmission, which was mediated by increasing presynaptic glutamate release and activation of NMDA receptor and NF-κB in the spinal dorsal horn.