I am a
Home I AM A Search Login

Papers of the Week


Papers: 11 Jan 2020 - 17 Jan 2020


Animal Studies


2020 03


Neurochem Int


134

Chronic constriction injury of the sciatic nerve in rats causes different activation modes of microglia between the anterior and posterior horns of the spinal cord.

Authors

Nishihara T, Tanaka J, Sekiya K, Nishikawa Y, Abe N, Hamada T, Kitamura S, Ikemune K, Ochi S, Choudhury ME, Yano H, Yorozuya T
Neurochem Int. 2020 03; 134:104672.
PMID: 31926989.

Abstract

Chronic constriction injury of the sciatic nerve is frequently considered as a cause of chronic neuropathic pain. Marked activation of microglia in the posterior horn (PH) has been well established with regard to this pain. However, microglial activation in the anterior horn (AH) is also strongly induced in this process. Therefore, in this study, we compared the differential activation modes of microglia in the AH and PH of the lumbar cord 7 days after chronic constriction injury of the left sciatic nerve in Wistar rats. Microglia in both the ipsilateral AH and PH demonstrated increased immunoreactivity of the microglial markers Iba1 and CD11b. Moreover, abundant CD68 phagosomes were observed in the cytoplasm. Microglia in the AH displayed elongated somata with tightly surrounding motoneurons, whereas cells in the PH displayed a rather ameboid morphology and were attached to myelin sheaths rather than to neurons. Microglia in the AH strongly expressed NG2 chondroitin sulfate proteoglycan. Despite the tight attachment to neurons in the AH, a reduction in synaptic proteins was not evident, suggesting engagement of the activated microglia in synaptic stripping. Myelin basic protein immunoreactivity was observed in the phagosomes of activated microglia in the PH, suggesting the phagocytic removal of myelin. CCI caused both motor deficit and hyperalgesia that were evaluated by applying BBB locomotor rating scale and von Frey test, respectively. Motor defict was the most evident at postoperative day1, and that became less significant thereafter. By contrast, hyperalgesia was not severe at day 1 but it became worse at least by day 7. Collectively, the activation modes of microglia were different between the AH and PH, which may be associated with the difference in the course of motor and sensory symptoms.