I am a
Home I AM A Search Login

Papers of the Week


Papers: 2 Nov 2019 - 8 Nov 2019


Animal Studies


2020 Jan


Exp Neurol


323

Brain activity changes in a monkey model of central post-stroke pain.

Authors

Nagasaka K, Takashima I, Matsuda K, Higo N
Exp Neurol. 2020 Jan; 323:113096.
PMID: 31682802.

Abstract

Central post-stroke pain (CPSP) can occur after stroke in the somatosensory pathway that includes the posterolateral region of the thalamus. Tactile allodynia, in which innocuous tactile stimuli are perceived as painful, is common in patients with CPSP. Previous brain imaging studies have reported plastic changes in brain activity in patients with tactile allodynia after stroke, but a causal relationship between such changes and the symptoms has not been established. We recently developed a non-human primate (macaque) model of CPSP based on thalamic lesions, in which the animals show behavioral changes consistent with the occurrence of tactile allodynia. Here we performed functional magnetic resonance imaging under propofol anesthesia to investigate the changes in brain activation associated with the allodynia in this CPSP model. Before the lesion, innocuous tactile stimuli significantly activated the contralateral sensorimotor cortex. When behavioral changes were observed after the thalamic lesion, equivalent stimuli significantly activated pain-related brain areas, including the posterior insular cortex (PIC), secondary somatosensory cortex (SII), anterior cingulate cortex (ACC), and amygdala. Moreover, when either PIC/SII or ACC was pharmacologically inactivated, the signs of tactile allodynia were dampened. Our results show that increased cortical activity plays a role in CPSP-induced allodynia.